Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Int J Mol Sci ; 23(3)2022 Jan 24.
Article in English | MEDLINE | ID: covidwho-1686810

ABSTRACT

Aortic aneurysms are sometimes associated with enhanced-fibrinolytic-type disseminated intravascular coagulation (DIC). In enhanced-fibrinolytic-type DIC, both coagulation and fibrinolysis are markedly activated. Typical cases show decreased platelet counts and fibrinogen levels, increased concentrations of fibrin/fibrinogen degradation products (FDP) and D-dimer, and increased FDP/D-dimer ratios. Thrombin-antithrombin complex or prothrombin fragment 1 + 2, as markers of coagulation activation, and plasmin-α2 plasmin inhibitor complex, a marker of fibrinolytic activation, are all markedly increased. Prolongation of prothrombin time (PT) is not so obvious, and the activated partial thromboplastin time (APTT) is rather shortened in some cases. As a result, DIC can be neither diagnosed nor excluded based on PT and APTT alone. Many of the factors involved in coagulation and fibrinolysis activation are serine proteases. Treatment of enhanced-fibrinolytic-type DIC requires consideration of how to control the function of these serine proteases. The cornerstone of DIC treatment is treatment of the underlying pathology. However, in some cases surgery is either not possible or exacerbates the DIC associated with aortic aneurysm. In such cases, pharmacotherapy becomes even more important. Unfractionated heparin, other heparins, synthetic protease inhibitors, recombinant thrombomodulin, and direct oral anticoagulants (DOACs) are agents that inhibit serine proteases, and all are effective against DIC. Inhibition of activated coagulation factors by anticoagulants is key to the treatment of DIC. Among them, DOACs can be taken orally and is useful for outpatient treatment. Combination therapy of heparin and nafamostat allows fine-adjustment of anticoagulant and antifibrinolytic effects. While warfarin is an anticoagulant, this agent is ineffective in the treatment of DIC because it inhibits the production of coagulation factors as substrates without inhibiting activated coagulation factors. In addition, monotherapy using tranexamic acid in cases of enhanced-fibrinolytic-type DIC may induce fatal thrombosis. If tranexamic acid is needed for DIC, combination with anticoagulant therapy is of critical importance.


Subject(s)
Aortic Aneurysm/complications , Disseminated Intravascular Coagulation/therapy , Fibrinolysis/drug effects , Anticoagulants/pharmacology , Antifibrinolytic Agents/blood , Fibrin Fibrinogen Degradation Products , Fibrinolysin , Fibrinolysis/physiology , Heparin/pharmacology , Humans , Partial Thromboplastin Time , Prothrombin Time , alpha-2-Antiplasmin
2.
Nutrients ; 13(12)2021 Nov 29.
Article in English | MEDLINE | ID: covidwho-1542693

ABSTRACT

Bromelain is a major sulfhydryl proteolytic enzyme found in pineapple plants, having multiple activities in many areas of medicine. Due to its low toxicity, high efficiency, high availability, and relative simplicity of acquisition, it is the object of inexhaustible interest of scientists. This review summarizes scientific reports concerning the possible application of bromelain in treating cardiovascular diseases, blood coagulation and fibrinolysis disorders, infectious diseases, inflammation-associated diseases, and many types of cancer. However, for the proper application of such multi-action activities of bromelain, further exploration of the mechanism of its action is needed. It is supposed that the anti-viral, anti-inflammatory, cardioprotective and anti-coagulatory activity of bromelain may become a complementary therapy for COVID-19 and post-COVID-19 patients. During the irrepressible spread of novel variants of the SARS-CoV-2 virus, such beneficial properties of this biomolecule might help prevent escalation and the progression of the COVID-19 disease.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Anticoagulants/therapeutic use , Blood Coagulation Disorders/drug therapy , Bromelains/therapeutic use , COVID-19 Drug Treatment , Cardiotonic Agents/therapeutic use , Cardiovascular Diseases/drug therapy , Neoplasms/drug therapy , Plant Proteins/therapeutic use , SARS-CoV-2 , Ananas/enzymology , Anti-Inflammatory Agents/chemistry , Anticoagulants/chemistry , Bromelains/chemistry , Cardiotonic Agents/chemistry , Fibrinolysis/drug effects , Humans , Plant Proteins/chemistry
3.
J Thromb Haemost ; 18(7): 1752-1755, 2020 07.
Article in English | MEDLINE | ID: covidwho-1317980

ABSTRACT

A prothrombotic coagulopathy is commonly found in critically ill COVID-19 patients with acute respiratory distress syndrome (ARDS). A unique feature of COVID-19 respiratory failure is a relatively preserved lung compliance and high Alveolar-arterial oxygen gradient, with pathology reports consistently demonstrating diffuse pulmonary microthrombi on autopsy, all consistent with a vascular occlusive etiology of respiratory failure rather than the more classic findings of low-compliance in ARDS. The COVID-19 pandemic is overwhelming the world's medical care capacity with unprecedented needs for mechanical ventilators and high rates of mortality once patients progress to needing mechanical ventilation, and in many environments including in parts of the United States the medical capacity is being exhausted. Fibrinolytic therapy has previously been used in a Phase 1 clinical trial that led to reduced mortality and marked improvements in oxygenation. Here we report a series of three patients with severe COVID-19 respiratory failure who were treated with tissue plasminogen activator. All three patients had a temporally related improvement in their respiratory status, with one of them being a durable response.


Subject(s)
Betacoronavirus/pathogenicity , Blood Coagulation Disorders/drug therapy , Coronavirus Infections/drug therapy , Fibrinolysis/drug effects , Fibrinolytic Agents/administration & dosage , Pneumonia, Viral/drug therapy , Thrombolytic Therapy , Tissue Plasminogen Activator/administration & dosage , Aged , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/diagnosis , Blood Coagulation Disorders/virology , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Fatal Outcome , Female , Fibrinolytic Agents/adverse effects , Host-Pathogen Interactions , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Recovery of Function , SARS-CoV-2 , Thrombolytic Therapy/adverse effects , Tissue Plasminogen Activator/adverse effects , Treatment Outcome
4.
Shock ; 55(3): 316-320, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1304005

ABSTRACT

ABSTRACT: The coronavirus disease (COVID-19) pandemic has threatened millions of lives worldwide with severe systemic inflammation, organ dysfunction, and thromboembolic disease. Within our institution, many critically ill COVID-19-positive patients suffered major thrombotic events, prompting our clinicians to evaluate hypercoagulability outside of traditional coagulation testing.We determined the prevalence of fibrinolysis shutdown via rotational thromboelastometry (ROTEM, Instrumentation Laboratories, Bedford, Mass) in patients admitted to the intensive care unit over a period of 3 weeks. In 25 patients who had a ROTEM test, we found that 11 (44%) met criteria for fibrinolysis shutdown. Eight of 9 (73%) of the VTE patients met criteria for fibrinolysis shutdown.Given the high rate of fibrinolysis shutdown in these patients, our data support using viscoelastic testing to evaluate for the presence of impaired fibrinolysis. This may help identify patient subsets who might benefit from the administration of fibrinolytics.


Subject(s)
COVID-19/complications , Fibrinolysis , Intensive Care Units , Thrombelastography , Thrombophilia/diagnosis , Thrombosis/diagnosis , Venous Thromboembolism/diagnosis , Adult , Aged , COVID-19/blood , COVID-19/diagnosis , Clinical Decision-Making , Female , Fibrinolysis/drug effects , Fibrinolytic Agents/therapeutic use , Humans , Male , Middle Aged , Patient Selection , Predictive Value of Tests , Retrospective Studies , Thrombophilia/blood , Thrombophilia/drug therapy , Thrombophilia/etiology , Thrombosis/blood , Thrombosis/drug therapy , Thrombosis/etiology , Venous Thromboembolism/blood , Venous Thromboembolism/drug therapy , Venous Thromboembolism/etiology
5.
Int J Mol Sci ; 22(13)2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1295857

ABSTRACT

Hypercoagulation is one of the major risk factors for ICU treatment, mechanical ventilation, and death in critically ill patients infected with SARS-CoV-2. At the same time, hypoalbuminemia is one risk factor in such patients, independent of age and comorbidities. Especially in patients with severe SARS-CoV-2-infection, albumin infusion may be essential to improve hemodynamics and to reduce the plasma level of the main marker of thromboembolism, namely, the D-dimer plasma level, as suggested by a recent report. Albumin is responsible for 80% of the oncotic pressure in the vessels. This is necessary to keep enough water within the systemic circulatory system and for the maintenance of sufficient blood pressure, as well as for sufficient blood supply for vital organs like the brain, lungs, heart, and kidney. The liver reacts to a decrease in oncotic pressure with an increase in albumin synthesis. This is normally possible through the use of amino acids from the proteins introduced with the nutrients reaching the portal blood. If these are not sufficiently provided with the diet, amino acids are delivered to the liver from muscular proteins by systemic circulation. The liver is also the source of coagulation proteins, such as fibrinogen, fibronectin, and most of the v WF VIII, which are physiological components of the extracellular matrix of the vessel wall. While albumin is the main negative acute-phase protein, fibrinogen, fibronectin, and v WF VIII are positive acute-phase proteins. Acute illnesses cause the activation of defense mechanisms (acute-phase reaction) that may lead to an increase of fibrinolysis and an increase of plasma level of fibrinogen breakdown products, mainly fibrin and D-dimer. The measurement of the plasma level of the D-dimer has been used as a marker for venous thromboembolism, where a fourfold increase of the D-dimer plasma level was used as a negative prognostic marker in critically ill SARS-CoV-2 hospitalized patients. Increased fibrinolysis can take place in ischemic peripheral sites, where the mentioned coagulation proteins can become part of the provisional clot (e.g., in the lungs). Although critically ill SARS-CoV-2-infected patients are considered septic shock patients, albumin infusions have not been considered for hemodynamic resuscitation and as anticoagulants. The role of coagulation factors as provisional components of the extracellular matrix in case of generalized peripheral ischemia due to hypoalbuminemia and hypovolemia is discussed in this review.


Subject(s)
Albumins/administration & dosage , COVID-19/therapy , Hemodilution/methods , Anticoagulants/administration & dosage , Blood Coagulation/drug effects , COVID-19/blood , COVID-19/metabolism , Critical Illness/therapy , Fibrinolysis/drug effects , Humans , SARS-CoV-2/isolation & purification , Thrombelastography
6.
J Thromb Thrombolysis ; 52(3): 766-771, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1172396

ABSTRACT

Patients critically ill with COVID-19 are at risk for thrombotic events despite prophylactic anticoagulation. Impaired fibrinolysis has been proposed as an underlying mechanism. Our objective was to determine if fibrinolysis stimulated by tissue plasminogen activator (tPA) differed between COVID patients and controls. Plasma from 14 COVID patients on prophylactic heparin therapy was obtained and compared with heparinized plasma from 14 different healthy donors to act as controls. Kaolin activated thromboelastography with heparinase was utilized to obtain baseline measurements and then repeated with the addition of 4 nM tPA. Baseline fibrinogen levels were higher in COVID plasma as measured by maximum clot amplitude (43.6 ± 6.9 mm vs. 23.2 ± 5.5 mm, p < 0.0001) and Clauss assay (595 ± 135 mg/dL vs. 278 ± 44 mg/dL, p < 0.0001). With the addition of tPA, fibrinolysis at 30 min after MA (LY30%) was lower (37.9 ± 16.5% vs. 58.9 ± 18.3%, p = 0.0035) and time to 50% lysis was longer (48.8 ± 16.3 vs. 30.5 ± 15.4 min, p = 0.0053) in the COVID-19 samples. Clotting times and rate of fibrin polymerization ('R' or 'α' parameters) were largely the same in both groups. Clot from COVID patients contains a higher fibrin content compared to standard controls and shows resistance to fibrinolysis induced by tPA. These findings suggest the clinical efficacy of thrombolytics may be reduced in COVID-19 patients.


Subject(s)
COVID-19/blood , Fibrinolysis/drug effects , Fibrinolytic Agents/pharmacology , Thrombelastography , Tissue Plasminogen Activator/pharmacology , COVID-19/diagnosis , Case-Control Studies , Critical Illness , Humans , Kinetics
7.
Int J Mol Sci ; 22(3)2021 Jan 28.
Article in English | MEDLINE | ID: covidwho-1055067

ABSTRACT

The novel coronavirus disease (COVID-19) has many characteristics common to those in two other coronavirus acute respiratory diseases, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). They are all highly contagious and have severe pulmonary complications. Clinically, patients with COVID-19 run a rapidly progressive course of an acute respiratory tract infection with fever, sore throat, cough, headache and fatigue, complicated by severe pneumonia often leading to acute respiratory distress syndrome (ARDS). The infection also involves other organs throughout the body. In all three viral illnesses, the fibrinolytic system plays an active role in each phase of the pathogenesis. During transmission, the renin-aldosterone-angiotensin-system (RAAS) is involved with the spike protein of SARS-CoV-2, attaching to its natural receptor angiotensin-converting enzyme 2 (ACE 2) in host cells. Both tissue plasminogen activator (tPA) and plasminogen activator inhibitor 1 (PAI-1) are closely linked to the RAAS. In lesions in the lung, kidney and other organs, the two plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA), along with their inhibitor, plasminogen activator 1 (PAI-1), are involved. The altered fibrinolytic balance enables the development of a hypercoagulable state. In this article, evidence for the central role of fibrinolysis is reviewed, and the possible drug targets at multiple sites in the fibrinolytic pathways are discussed.


Subject(s)
COVID-19 Drug Treatment , COVID-19/blood , Drug Discovery , Fibrinolysis , Animals , COVID-19/complications , Fibrinolysis/drug effects , Humans , Molecular Targeted Therapy , Renin-Angiotensin System/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Thrombosis/blood , Thrombosis/drug therapy , Thrombosis/etiology
8.
Br J Anaesth ; 126(3): 590-598, 2021 03.
Article in English | MEDLINE | ID: covidwho-965444

ABSTRACT

BACKGROUND: Critically ill coronavirus disease 2019 (COVID-19) patients present with a hypercoagulable state with high rates of macrovascular and microvascular thrombosis, for which hypofibrinolysis might be an important contributing factor. METHODS: We retrospectively analysed 20 critically ill COVID-19 patients at Innsbruck Medical University Hospital whose coagulation function was tested with ClotPro® and compared with that of 60 healthy individuals at Augsburg University Clinic. ClotPro is a viscoelastic whole blood coagulation testing device. It includes the TPA test, which uses tissue factor (TF)-activated whole blood with added recombinant tissue-derived plasminogen activator (r-tPA) to induce fibrinolysis. For this purpose, the lysis time (LT) is measured as the time from when maximum clot firmness (MCF) is reached until MCF falls by 50%. We compared COVID-19 patients with prolonged LT in the TPA test and those with normal LT. RESULTS: Critically ill COVID-19 patients showed hypercoagulability in ClotPro assays. MCF was higher in the EX test (TF-activated assay), IN test (ellagic acid-activated assay), and FIB test (functional fibrinogen assay) with decreased maximum lysis (ML) in the EX test (hypofibrinolysis) and highly prolonged TPA test LT (decreased fibrinolytic response), as compared with healthy persons. COVID-19 patients with decreased fibrinolytic response showed higher fibrinogen levels, higher thrombocyte count, higher C-reactive protein levels, and decreased ML in the EX test and IN test. CONCLUSION: Critically ill COVID-19 patients have impaired fibrinolysis. This hypofibrinolytic state could be at least partially dependent on a decreased fibrinolytic response.


Subject(s)
COVID-19/blood , COVID-19/epidemiology , Critical Illness/epidemiology , Fibrinolysis/drug effects , Thrombophilia/blood , Thrombophilia/epidemiology , Adult , Aged , Anticoagulants/administration & dosage , Blood Coagulation Tests/methods , COVID-19/diagnosis , Female , Fibrinolysis/physiology , Humans , Male , Middle Aged , Retrospective Studies , Thrombophilia/diagnosis , Tissue Plasminogen Activator/administration & dosage
9.
Shock ; 55(4): 465-471, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-744653

ABSTRACT

ABSTRACT: Patients with severe coronavirus disease-2019 (COVID-19) frequently have hypercoagulability caused by the immune response to the severe acute respiratory syndrome coronavirus-2 infection. The pathophysiology of COVID-19 associated hypercoagulability is not fully understood, but characteristic changes include: increased fibrinogen concentration, increased Factor VIII activity, increased circulating von Willebrand factor, and exhausted fibrinolysis. Anticoagulant therapy improves outcomes in mechanically ventilated patients with COVID-19 and viscoelastic coagulation testing offers an opportunity to tailor anticoagulant therapy based on an individual patient's coagulation status. In this narrative review, we summarize clinical manifestations of COVID-19, mechanisms, monitoring considerations, and anticoagulant therapy. We also review unique considerations for COVID-19 patients who are on extracorporeal membrane oxygenation.


Subject(s)
COVID-19/diagnosis , COVID-19/therapy , Thrombophilia/diagnosis , Thrombophilia/therapy , Anticoagulants/therapeutic use , Blood Coagulation Tests , Blood Viscosity/physiology , COVID-19/blood , Combined Modality Therapy , Correlation of Data , Endothelium, Vascular/physiopathology , Extracorporeal Membrane Oxygenation , Factor VIII/physiology , Fibrinogen/physiology , Fibrinolysis/drug effects , Fibrinolysis/physiology , Humans , Monitoring, Physiologic , Respiration, Artificial , Thrombelastography , Thrombophilia/blood
10.
J Thromb Haemost ; 18(10): 2646-2653, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-697179

ABSTRACT

BACKGROUND: COVID-19 is associated with a substantial risk of venous thrombotic events, even in the presence of adequate thromboprophylactic therapy. OBJECTIVES: We aimed to better characterize the hypercoagulable state of COVID-19 patients in patients receiving anticoagulant therapy. METHODS: We took plasma samples of 23 patients with COVID-19 who were on prophylactic or intensified anticoagulant therapy. Twenty healthy volunteers were included to establish reference ranges. RESULTS: COVID-19 patients had a mildly prolonged prothrombin time, high von Willebrand factor levels and low ADAMTS13 activity. Most rotational thromboelastometry parameters were normal, with a hypercoagulable maximum clot firmness in part of the patients. Despite detectable anti-activated factor X activity in the majority of patients, ex vivo thrombin generation was normal, and in vivo thrombin generation elevated as evidenced by elevated levels of thrombin-antithrombin complexes and D-dimers. Plasma levels of activated factor VII were lower in patients, and levels of the platelet activation marker soluble CD40 ligand were similar in patients and controls. Plasmin-antiplasmin complex levels were also increased in patients despite an in vitro hypofibrinolytic profile. CONCLUSIONS: COVID-19 patients are characterized by normal in vitro thrombin generation and enhanced clot formation and decreased fibrinolytic potential despite the presence of heparin in the sample. Anticoagulated COVID-19 patients have persistent in vivo activation of coagulation and fibrinolysis, but no evidence of excessive platelet activation. Ongoing activation of coagulation despite normal to intensified anticoagulant therapy indicates studies on alternative antithrombotic strategies are urgently required.


Subject(s)
Anticoagulants/therapeutic use , Blood Coagulation/drug effects , COVID-19 Drug Treatment , Fibrinolysis/drug effects , Venous Thrombosis/prevention & control , Adult , Aged , Blood Coagulation Tests , COVID-19/blood , COVID-19/complications , COVID-19/diagnosis , Case-Control Studies , Drug Monitoring , Female , Humans , Male , Middle Aged , Treatment Outcome , Venous Thrombosis/blood , Venous Thrombosis/diagnosis , Venous Thrombosis/etiology
11.
Intern Emerg Med ; 15(8): 1369-1373, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-691858

ABSTRACT

The overflow of studies in the recent literature on COVID-19 often gives provisional or contradictory results and therefore deserves pauses of reflection and reconsideration. In fact, knowledges of pathophysiology of this new disease are still in development and hence originate discussions and interpretations. Regarding the role of blood coagulation and fibrinolysis, these mechanisms should be considered as crucial especially in severe cases. It is proposed to consider two distinct phenotypes of thrombotic manifestations: the current "thromboembolic type" also occurring in other kinds of sepsis, and the diffuse micro-thrombotic type, prevailing in the lungs but sometimes extending to other organs. Both types can induce severe disease and are potentially lethal. The micro-thrombotic pattern, more specific for COVID-19, results from a massive activation of coagulation strictly coupled with a hyper-intense inflammatory and immune reaction. This results in widespread occlusive thrombotic micro-angiopathy with destruction of alveoli and obstructive neoangiogenesis. The involvement of fibrinolysis, often neglected, confers a double faceted process of activation/inhibition, finally conducive to a fibrinolytic shutdown that reinforces persistence of micro-thrombi. Considering these peculiar mechanisms, it seems evident that both prophylactic and therapeutic effects of current anti-thrombotic drugs cannot be taken for granted and need therefore new specific and rigorous controlled trials.


Subject(s)
Blood Coagulation/drug effects , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Fibrinolysis/drug effects , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Blood Coagulation/physiology , COVID-19 , Fibrinolysis/physiology , Humans , Pandemics , Thrombolytic Therapy/methods
12.
J Thromb Haemost ; 18(9): 2118-2122, 2020 09.
Article in English | MEDLINE | ID: covidwho-599236

ABSTRACT

The COVID-19 pandemic has provided many challenges in the field of thrombosis and hemostasis. Among these is a novel form of coagulopathy that includes exceptionally high levels of D-dimer. D-dimer is a marker of poor prognosis, but does this also imply a causal relationship? These spectacularly raised D-dimer levels may actually signify the failing attempt of the fibrinolytic system to remove fibrin and necrotic tissue from the lung parenchyma, being consumed or overwhelmed in the process. Indeed, recent studies suggest that increasing fibrinolytic activity might offer hope for patients with critical disease and severe respiratory failure. However, the fibrinolytic system can also be harnessed by coronavirus to promote infectivity and where antifibrinolytic measures would also seem appropriate. Hence, there is a clinical paradox where plasmin formation can be either deleterious or beneficial in COVID-19, but not at the same time. Hence, it all comes down to timing.


Subject(s)
COVID-19 Drug Treatment , COVID-19/blood , COVID-19/complications , Fibrinolysis/drug effects , Acute Lung Injury , Animals , Antifibrinolytic Agents/pharmacology , Fibrin/metabolism , Fibrin Fibrinogen Degradation Products/metabolism , Fibrinolysin/metabolism , Humans , Immune System , Lung/metabolism , Necrosis , Prognosis , Thrombolytic Therapy , Tissue Plasminogen Activator/pharmacology
13.
J Thromb Haemost ; 18(7): 1548-1555, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-116254

ABSTRACT

The global pandemic of coronavirus disease 2019 (COVID-19) is associated with the development of acute respiratory distress syndrome (ARDS), which requires ventilation in critically ill patients. The pathophysiology of ARDS results from acute inflammation within the alveolar space and prevention of normal gas exchange. The increase in proinflammatory cytokines within the lung leads to recruitment of leukocytes, further propagating the local inflammatory response. A consistent finding in ARDS is the deposition of fibrin in the air spaces and lung parenchyma. COVID-19 patients show elevated D-dimers and fibrinogen. Fibrin deposits are found in the lungs of patients due to the dysregulation of the coagulation and fibrinolytic systems. Tissue factor (TF) is exposed on damaged alveolar endothelial cells and on the surface of leukocytes promoting fibrin deposition, while significantly elevated levels of plasminogen activator inhibitor 1 (PAI-1) from lung epithelium and endothelial cells create a hypofibrinolytic state. Prophylaxis treatment of COVID-19 patients with low molecular weight heparin (LMWH) is important to limit coagulopathy. However, to degrade pre-existing fibrin in the lung it is essential to promote local fibrinolysis. In this review, we discuss the repurposing of fibrinolytic drugs, namely tissue-type plasminogen activator (tPA), to treat COVID-19 associated ARDS. tPA is an approved intravenous thrombolytic treatment, and the nebulizer form has been shown to be effective in plastic bronchitis and is currently in Phase II clinical trial. Nebulizer plasminogen activators may provide a targeted approach in COVID-19 patients to degrade fibrin and improving oxygenation in critically ill patients.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/drug therapy , Fibrinolysis/drug effects , Fibrinolytic Agents/administration & dosage , Pneumonia, Viral/drug therapy , Thrombolytic Therapy , Tissue Plasminogen Activator/administration & dosage , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Drug Repositioning , Fibrinolytic Agents/adverse effects , Host-Pathogen Interactions , Humans , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2 , Thrombolytic Therapy/adverse effects , Tissue Plasminogen Activator/adverse effects , Treatment Outcome , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL